If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-25y+56=0
a = 2; b = -25; c = +56;
Δ = b2-4ac
Δ = -252-4·2·56
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{177}}{2*2}=\frac{25-\sqrt{177}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{177}}{2*2}=\frac{25+\sqrt{177}}{4} $
| (3c+2)=+4(1.3c-5) | | 2x=-1x+5 | | 79-v=222 | | 8+4m=-2+7(8-6m) | | 23-43v=80 | | 5/6x-11=1/6x+13 | | 2y^2-25y+88=0 | | 33=5x+4 | | 2y^2+25y+88=0 | | 80=23-43v | | -1x+5=-5x-6 | | 25=-3t-2 | | 4/3x-7/4=5/6x | | 2y^2-28y+132=0 | | 2y^2+28y+132=0 | | 37=-8t+3 | | 80=23=43v | | 16x-18=10x | | -4x+4=64 | | -3(4n+5)=-12n-20 | | 2y^2-25y+132=0 | | F(x)=0,4(x-0,8)+0,5 | | -2-8(4n-1)=2+6 | | 489=n/2.3 | | 2y^2+25y+132=0 | | |-5x-110|=|15x-10| | | 3/x+1/5=20 | | 200.96=3.14*r*2 | | w+3.7=9.4 | | 2.50x=30=45 | | x-4.6=-8.4 | | 7^y+9=3 |